Low-velocity Impact Damage and Compression Failure Behavior of Epoxy Composites

WANG Ling, LI Qian, HU Tao, LI Yong, SHE Zuxin, REN Hongyu

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (11) : 169-177.

PDF(8400 KB)
PDF(8400 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (11) : 169-177. DOI: 10.7643/ issn.1672-9242.2025.11.018
Environmental Test and Observation

Low-velocity Impact Damage and Compression Failure Behavior of Epoxy Composites

  • WANG Ling, LI Qian, HU Tao, LI Yong, SHE Zuxin, REN Hongyu
Author information +
History +

Abstract

The work aims to study the impact damage characteristics of WP3011/9A16/40% composite laminates under different low-velocity impact energy levels and their effects on post-impact compressive performance. Low-velocity impact tests and compression-after-impact (CAI) tests were conducted on the composite at varying impact energy levels. Microscopy, ultrasonic C-scan, digital image correlation (DIC), and mechanical testing equipment were employed to observe surface and internal damage, compressive strain evolution, residual compressive strength, and fracture morphology. A comparative analysis was performed on the impact damage characteristics, residual compressive strength variation, and compressive failure modes of the composite laminates. The extent of surface and internal damage in WP3011/9A16/40% composite laminates increased with the increase of the impact energy level. When the impact energy exceeded 4.5 J/mm, the dent depth increased significantly, while the growth rate of the internal damage area (measured via ultrasonic C-scan) slowed. The residual compressive strength decreased with the increase of the impact energy. At impact energy levels of 6.7 J/mm and above, localized micro-buckling failure characteristics appeared in the impacted region. The internal damage in WP3011/9A16/40% composites primarily consists of delamination and matrix cracking. The internal damage area initially increases with impact energy but then gets stable. During compression, damage propagation originates from the impact site and extends perpendicular to the compressive load. The primary failure mode in the impacted region is delamination, with micro-buckling becoming more pronounced at higher impact energy levels. In contrast, shear-induced delamination dominates in regions away from the impact site.

Key words

composite / low-velocity impact / damage area / dent depth / damage mode / compress strength / failure

Cite this article

Download Citations
WANG Ling, LI Qian, HU Tao, LI Yong, SHE Zuxin, REN Hongyu. Low-velocity Impact Damage and Compression Failure Behavior of Epoxy Composites[J]. Equipment Environmental Engineering. 2025, 22(11): 169-177 https://doi.org/10.7643/ issn.1672-9242.2025.11.018

References

[1] 肖琳, 王冠辉, 邱思, 等. 聚合物基复合材料低速冲击损伤的研究进展[J]. 材料科学与工艺, 2017, 25(6): 1-8.
XIAO L, WANG G H, QIU S, et al.Development on Damage of Low Velocity Impact on Polymer Matrix Composites[J]. Materials Science and Technology, 2017, 25(6): 1-8.
[2] 李珂, 巴金石, 李伟东. 高强中模型碳纤维树脂基复合材料冲击损伤比较研究[J]. 材料导报, 2025, 39(S1): 746-748.
LI K, BA J S, LI W D.Comparative Study on Impact Damage of Carbon Fiber Resin Matrix Composites with High Strength and Medium Model[J]. Materials Reports, 2025, 39(S1): 746-748.
[3] 段苗苗, 史文艳, 张晓研, 等. 低速冲击下复合材料层合板损伤试验与模拟[J]. 强度与环境, 2020, 47(2): 26-31.
DUAN M M, SHI W Y, ZHANG X Y, et al.Numerical Analysis and Tests of Composite Laminates under Low- Velocity Impact[J]. Structure & Environment Engineering, 2020, 47(2): 26-31.
[4] 王森, 赖家美, 阮金琦, 等. 不同粒子改性环氧树脂基碳纤维复合材料低速冲击及冲击后压缩性能[J]. 材料导报, 2021, 35(2): 2178-2184.
WANG S, LAI J M, RUAN J Q, et al.Low Speed Impact and Compression Properties of Epoxy Based Carbon Fiber Composite Modified by Different Particles[J]. Materials Reports, 2021, 35(2): 2178-02184.
[5] ZHENG N, HE J M, ZHAO D, et al.Improvement of Atomic Oxygen Erosion Resistance of Carbon Fiber and Carbon Fiber/Epoxy Composite Interface with a Silane Coupling Agent[J]. Materials & Design, 2016, 109: 171-178.
[6] WANG S C, ZHANG J, LIU L, et al.Evaluation of Cooling Property of High Density Polyethylene (HDPE)/Titanium Dioxide (TiO2) Composites after Accelerated Ultraviolet (UV) Irradiation[J]. Solar Energy Materials and Solar Cells, 2015, 143: 120-127.
[7] DE SOUZA RIOS A, DE AMORIM W F, DE MOURA E P, et al. Effects of Accelerated Aging on Mechanical, Thermal and Morphological Behavior of Polyurethane/Epoxy/ Fiberglass Composites[J]. Polymer Testing, 2016, 50: 152-163.
[8] ALMEIDA J H S, SOUZA S D B, BOTELHO E C, et al. Carbon Fiber-Reinforced Epoxy Filament-Wound Composite Laminates Exposed to Hygrothermal Conditioning[J]. Journal of Materials Science, 2016, 51(9): 4697-4708.
[9] 刘明, 潘峤, 高蒙, 等. 碳纤维增强树脂基复合材料层压板冲击损伤模式的试验研究[J]. 失效分析与预防, 2016, 11(5): 283-288.
LIU M, PAN Q, GAO M, et al.Experimental Study on Impact Damage Modes of Carbon Fiber Reinforced Resin Matrix Composite Laminates[J]. Failure Analysis and Prevention, 2016, 11(5): 283-288.
[10] NAITO K, TANAKA Y, YANG J M, et al.Tensile Properties of Ultrahigh Strength PAN-Based, Ultrahigh Modulus Pitch-Based and High Ductility Pitch-Based Carbon Fibers[J]. Carbon, 2008, 46(2): 189-195.
[11] ROSA L G, COLELLA A, ANJINHO C A. Effect of Paraffin Oil Used as a Lubricant in Tensile Tests of Carbon Fibre Bundles[J]. Materials Science Forum, 2006, 514/515/516: 672-676.
[12] 杨旭, 何为, 韩涛, 等. 低速冲击下复合材料层板压缩许用值[J]. 复合材料学报, 2014, 31(6): 1626-1634.
YANG X, HE W, HAN T, et al.Compressive Allowables of Composite Laminates Subjected to Low-Velocity Impact[J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1626-1634.
[13] JUMAHAT A, SOUTIS C, JONES F R, et al.Fracture Mechanisms and Failure Analysis of Carbon Fibre/ Toughened Epoxy Composites Subjected to Compressive Loading[J]. Composite Structures, 2010, 92(2): 295-305.
[14] 高禹, 王绍权, 董尚利, 等. 复合材料低速冲击测试与分析方法的研究进展[J]. 高分子材料科学与工程, 2015, 31(7): 184-190.
GAO Y, WANG S Q, DONG S L, et al.Recent Developments in Low-Velocity Impact Test and Analysis for Composite Plates[J]. Polymer Materials Science & Engineering, 2015, 31(7): 184-190.
[15] 许良, 涂宜鸣, 崔浩, 等. T800碳纤维复合材料低速冲击渐进损伤仿真与试验研究[J]. 大连理工大学学报, 2021, 61(6): 608-614.
XU L, TU Y M, CUI H, et al.Simulation and Experimental Research on Progressive Damage of T800 Carbon Fiber Composites under Low Velocity Impact[J]. Journal of Dalian University of Technology, 2021, 61(6): 608-614.
[16] CHOI H Y, DOWNS R J, CHANG F K.A New Approach Toward Understanding Damage Mechanisms and Mechanics of Laminated Composites Due to Low-Velocity Impact: Part I—Experiments[J]. Journal of Composite Materials, 1991, 25(8): 992-1011.
[17] DE MOURA M F S F, MARQUES A T. Prediction of Low Velocity Impact Damage in Carbon-Epoxy Laminates[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(3): 361-368.
[18] 董慧民, 闫丽, 安学锋, 等. 双马树脂基复合材料低速冲击响应及冲击后压缩行为研究[J]. 材料工程, 2022, 50(12): 71-78.
DONG H M, YAN L, AN X F, et al.Low Velocity Impact Response and Post Impact Compression Behavior of BMI Matrix Composites[J]. Journal of Materials Engineering, 2022, 50(12): 71-78.
[19] 刘杰, 范金娟, 王云英. 不同等级损伤复合材料层压板的压缩失效行为[J]. 航空材料学报, 2011, 31(6): 87-91.
LIU J, FAN J J, WANG Y Y.Compression Failure Behavior of Composite Laminates with Low-Velocity Impact Damage[J]. Journal of Aeronautical Materials, 2011, 31(6): 87-91.
[20] 李胤, 田干, 杨正伟, 等. 复合材料低速冲击损伤超声红外热波检测能力评估[J]. 仪器仪表学报, 2016, 37(5): 1124-1130.
LI Y, TIAN G, YANG Z W, et al.Detection Capability Evaluation of Low Velocity Impact Damage in Composites Using Ultrasonic Infrared Thermography[J]. Chinese Journal of Scientific Instrument, 2016, 37(5): 1124-1130.
[21] TOPAC O T, GOZLUKLU B, GURSES E, et al.Experimental and Computational Study of the Damage Process in CFRP Composite Beams under Low-Velocity Impact[J]. Composites Part A: Applied Science and Manufacturing, 2017, 92: 167-182.
[22] 万铖, 金平, 谭晓明, 等. 基于ABAQUS的复合材料低速冲击损伤分析[J]. 装备环境工程, 2014, 11(5): 38-42.
WAN C, JIN P, TAN X M, et al.Analysis for the Damage of Composites under Low-Velocity Impact Based on ABAQUS[J]. Equipment Environmental Engineering, 2014, 11(5): 38-42.
[23] 沈真, 杨胜春, 陈普会. 复合材料层压板抗冲击行为及表征方法的实验研究[J]. 复合材料学报, 2008, 25(5): 125-133.
SHEN Z, YANG S C, CHEN P H.Experimental Study on the Behavior and Characterization Methods of Composite Laminates to Withstand Impact[J]. Acta Materiae Compositae Sinica, 2008, 25(5): 125-133.
[24] 温卫东, 徐颖, 崔海坡. 低速冲击下复合材料层合板损伤分析[J]. 材料工程, 2007, 35(7): 6-11.
WEN W D, XU Y, CUI H P.Damage Analysis of Laminated Composites under Low Velocity Impact Loading[J]. Journal of Materials Engineering, 2007, 35(7): 6-11.
[25] 姚佳伟, 吴悦雷, 牛一凡. 湿热环境对HT3/5222复合材料冲击损伤影响的数值模拟[J]. 材料科学与工程学报, 2018, 36(2): 296-300.
YAO J W, WU Y L, NIU Y F.Numerical Simulation of Effects of Hygrothermal Environment on Impact Damage on HT3/5222 Composites[J]. Journal of Materials Science and Engineering, 2018, 36(2): 296-300.
[26] 王莉, 熊舒, 肇研, 等. T800级碳纤维复合材料抗冲击性能[J]. 航空材料学报, 2018, 38(5): 147-152.
WANG L, XIONG S, ZHAO Y, et al.Impact Resistance of T800 Carbon Fiber Composite Materials[J]. Journal of Aeronautical Materials, 2018, 38(5): 147-152.
[27] 高禹, 刘京, 王进, 等. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
GAO Y, LIU J, WANG J, et al.Effects of Vacuum Thermal Cycle on Low Velocity Impact Properties of Carbon Fiber/BMI Composites[J]. Journal of Materials Engineering, 2020, 48(7): 154-161.
[28] 徐瑀童, 左洪福, 陆晓华, 等. 含低速冲击损伤复合材料层合板剩余压缩强度预测[J]. 兵器装备工程学报, 2017, 38(8): 170-174.
XU Y T, ZUO H F, LU X H, et al.Residual Compressive Strength Prediction of Low-Speed Impact Damaged Composite Laminates[J]. Journal of Ordnance Equipment Engineering, 2017, 38(8): 170-174.
PDF(8400 KB)

Accesses

Citation

Detail

Sections
Recommended

/